Stable Marriage with Incomplete Lists and Ties

نویسندگان

  • Kazuo Iwama
  • David Manlove
  • Shuichi Miyazaki
  • Yasufumi Morita
چکیده

The original stable marriage problem requires all men and women to submit a complete and strictly ordered preference list. This is obviously often unrealistic in practice, and several relaxations have been proposed, including the following two common ones: one is to allow an incomplete list, i.e., a man is permitted to accept only a subset of the women and vice versa. The other is to allow a preference list including ties. Fortunately, it is known that both relaxed problems can still be solved in polynomial time. In this paper, we show that the situation changes substantially if we allow both relaxations (incomplete lists and ties) at the same time: the problem not only becomes NP-hard, but also the optimal cost version has no approximation algorithm achieving the approximation ratio of N1− , where N is the instance size, unless P=NP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Study of the Stable Marriage Problem with Ties and Incomplete Lists

We present the first complete algorithm for the SMTI problem, the stable marriage problem with ties and incomplete lists. We do this in the form of a constraint programming encoding of the problem. With this we are able to carry out the first empirical study of the complete solution of SMTI instances. In the stable marriage problem (SM) [5] we have men and women. Each man ranks the women, givin...

متن کامل

Stable Marriage Problem with Ties and Incomplete bounded length preference list under social stability

We consider a variant of socially stable marriage problem where preference lists may be incomplete, may contain ties and may have bounded length. In real world application like NRMP and Scottish medical matching scheme such restrictions arise very frequently where set of agents (man/woman) is very large and providing a complete and strict order preference list is practically in-feasible. In pre...

متن کامل

Stable Marriage with Ties and Unacceptable Partners

An instance of the classical stable marriage problem involves n men and n women, and each person ranks all n members of the opposite sex in strict order of preference. The effect of allowing ties in the preference lists has been investigated previously, and three natural definitions of stability arise. In this paper, we extend this study by allowing a preference list to involve ties and/or be i...

متن کامل

Inapproximability of Stable Marriage Problems

The stable marriage problem has received considerable attention both due to its practical applications as well as its mathematical structure. While the original problem has all participants rank all members of the opposite sex in a strict order of preference, two natural variations are to allow for incomplete preference lists and ties in the preferences. Both variations are polynomially solvabl...

متن کامل

Inapproximability Results on Stable Marriage Problems

The stable marriage problem has received considerable attention both due to its practical applications as well as its mathematical structure. While the original problem has all participants rank all members of the opposite sex in a strict order of preference, two natural variations are to allow for incomplete preference lists and ties in the preferences. Both variations are polynomially solvabl...

متن کامل

Approximation algorithms for hard variants of the stable marriage and hospitals/residents problems

When ties and incomplete preference lists are permitted in the Stable Marriage and Hospitals/Residents problems, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is known to be NP-hard, even under very severe restrictions on the number, size and position of ties. In this paper, we describe polynomial-time 5/3-approximation a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999